Galois module structure of holomorphic differentials
نویسندگان
چکیده
منابع مشابه
Galois Module Structure of Galois Cohomology
Let F be a field containing a primitive pth root of unity, and let U be an open normal subgroup of index p of the absolute Galois group GF of F . We determine the structure of the cohomology group H(U, Fp) as an Fp[GF /U ]-module for all n ∈ N. Previously this structure was known only for n = 1, and until recently the structure even of H(U, Fp) was determined only for F a local field, a case se...
متن کاملNontrivial Galois Module Structure of . . .
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملGalois Module Structure of Unramified Covers
Let G be a finite group. Suppose that Y is a projective algebraic variety over Z (i.e an integral scheme which is projective and flat over Spec (Z)) of relative dimension d. In this paper, we consider finite Galois covers π : X → Y with group G which are everywhere unramified, i.e “G-torsors”. Let F be a G-equivariant coherent sheaf on X. Consider the value of the right derived global section f...
متن کاملNontrivial Galois module structure of cyclotomic fields
We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...
متن کاملGalois Module Structure of Milnor K - Theory
Let E be a cyclic extension of pth-power degree of a field F of characteristic p. For all m, s ∈ N, we determine KmE/p sKmE as a (Z/pZ)[Gal(E/F )]-module. We also provide examples of extensions for which all of the possible nonzero summands in the decomposition are indeed nonzero. Let F be a field of characteristic p. Let KmF denote the mth Milnor K-group of F and kmF = KmF/pKmF . (See, for ins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2000
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700019018